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Abstract

Thought disorder – linguistic disturbances in-

cluding incoherence and derailment of topic –

is seen in individuals both with and at risk for

psychosis. Methods from computational lin-

guistics have increasingly sought to quantify

thought disorder to detect group differences

between clinical populations and healthy con-

trols. While previous work has been quite suc-

cessful at these classification tasks, the lack

of interpretability of the computational met-

rics has made it unclear whether they are in

fact measuring thought disorder. In this paper,

we dive into these measures to try to better

understand what they reflect. While we find

group differences between at-risk and healthy

control populations, we also find that the mea-

sures mostly do not correlate with existing

measures of thought disorder symptoms (what

they are intended to measure), but rather corre-

late with surface properties of the speech (e.g.,

sentence length) and sociodemographic prop-

erties of the speaker (e.g., race). These results

highlight the importance of considering inter-

pretability front and center as the field contin-

ues to grow. Ethical use of computational mea-

sures like those studied here – especially in the

high-stakes context of clinical care – requires

us to devote substantial attention to potential

biases in our measures.

1 Introduction

Individuals with psychosis exhibit language distur-

bances, often referred to as thought disorder. At

the discourse level, this includes poverty of speech

(low quantities of speech), poverty of speech con-

tent (vague, repetitive speech), as well as the focus

of this work: incoherence and derailment (slow but

steady loss of topic; e.g., ‘I always liked geogra-

phy. My last teacher in that subject was Professor

August A. He was a man with black eyes. I also

like black eyes. There are also blue and grey eyes

and other sorts.’) (Andreasen, 1986; Bleuler, 1950;

Kuperberg, 2010). These symptoms are used to di-

agnose psychotic disorders and are thought to have

predictive clinical value (Andreasen, 1979, 1986;

Andreasen and Grove, 1986; First, 1997; Roche

et al., 2016; Wilcox et al., 2012). Similar, but at-

tenuated, symptoms are observed in individuals

who do not have psychosis, but who meet criteria

for being at clinical high-risk for psychosis (CHR).

In this population, the presence of these linguis-

tic symptoms predicts later transition to psychosis

(Bearden et al., 2011; Demjaha et al., 2017; Perkins

et al., 2015).

However, despite the clinical value of these mea-

sures, these symptoms have generally been evalu-

ated via self-report and/or overall clinician impres-

sions, which may capture only the most extreme

disturbances. Manual annotations of specific lin-

guistic features may allow for more nuanced mea-

sures; however, they are time-intensive and infeasi-

ble to apply on a wide scale. As a result, these lin-

guistic measures, despite their clinical value, have

been underused in the field.

There is a growing body of literature trying to

automatically quantify these linguistic differences

using methods from computational linguistics, both

in psychosis (Elvevåg et al., 2007; Iter et al., 2018;

Just et al., 2019; Hitczenko et al., 2020) and CHR

populations (Bedi et al., 2015; Corcoran et al.,

2018; Gupta et al., 2018; Corcoran et al., 2020).

This work has been quite successful, replicating

group differences between patient and healthy pop-

ulations and accurately categorizing individuals

into appropriate groups. However, much of the

focus of this work has been on separating groups,

and there has been less of a focus on relating these

metrics to symptoms. Work examining this rela-

tionship has sometimes found correlations between

these computational metrics and relevant symp-

toms, but has often failed to find such relationships.

In order for these measures to be useful clinically,

it is important to establish their construct validity:
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Do they relate to relevant symptoms? Or, do their

instead reflect other linguistic/demographic fac-

tors? Establishing trust for a system’s predictions

is particularly important in the clinical/medical set-

ting where these systems could have substantial

consequences (Ribeiro et al., 2016). This is espe-

cially true as the machine learning systems that

these metrics rely on are known to exhibit poten-

tially harmful biases in other domains (Bolukbasi

et al., 2016; Caliskan et al., 2017; Koenecke et al.,

2020).

In this paper, we dive into measures utilized in

previous work to try to understand what they reflect.

Following this work, we use a suite of models to

quantify incoherence and derailment on speech pro-

duced by the CHR vs. HC groups (individuals who

meet criteria for being at high-risk for psychosis

vs. healthy controls). We examine group differ-

ences, finding significant differences using a subset

of measures (at uncorrected α = .05). We then cri-

tique these measures to determine if they reflect

the target thought disorder symptoms – and fail

to find specific correlations. Finally, we consider

what these measures do reflect, finding that they

partially reflect surface properties of the speech

(sentence length) and sociodemographic properties

of the speaker. These results highlight the need to

consider the interpretability of these measures as

the field continues to grow.

2 A Note on Terminology

Past work applying computational methods to study

thought disorder in psychosis has used the words

‘incoherence’ or ‘tangentiality’ to describe their

object of study, which has focused on the cohe-

sion between sentences. However, this terminology

is somewhat misaligned with the terminology dis-

cussed in the original thought disorder literature,

which uses ‘incoherence’ to describe a lack of cohe-

sion within sentences and ‘tangentiality’ for cases

where participants give an off-topic response to a

question (Andreasen, 1986). In this paper, we fol-

low the naming conventions of past computational

work in this area. We will refer to methods mea-

suring the cohesion between neighboring sentences

as ‘coherence measures’ and methods measuring

how much a text drifts off topic as ‘tangentiality

measures’. However, it is very important to note

that these methods better relate to derailment as

defined in Andreasen (1986), as they measure how

much a participant shifts topics between sentences.

CHR HC

Sociodemographics

Age 21.0(2.3) 21.6(3.2)
Sex

Female 47% 71%
Male 53% 29%

Education Level 14.4(2.1) 14.6(2.2)
Racial Identity

First Nations 0% 2%
East Asian 9% 7%
Southeast Asian 0% 5%
South Asian 6% 2%
Black 37% 17%
Central/South American 11% 2%
West/Central Asia and ME 0% 2%
White 31% 51%
Interracial 6% 10%

Ethnicity
Hispanic 23% 12%
Not Hispanic 77% 88%

WRAT Score 108(15) 118(13)
Speech Samples

Sentence Length 29.2(6.5) 30.8(10.1)
Lexical Diversity 0.70(0.04) 0.71(0.03)
Response Length 295(169) 275(121)

Table 1: Summary of participant and speech sample

measures. ME = Middle East.

3 Methods

3.1 Participants

Speech samples were obtained from 77 participants

aged 16-30: (a) 36 who met criteria for being at

clinical high-risk for psychosis, and (b) 41 healthy

controls. Participants were recruited from the larger

Chicago, Illinois area through newspaper, transit,

and Craigslist ads, e-mail postings, flyers, and com-

munity professional referrals. The Structured In-

terview for Prodromal Syndromes (SIPS) was used

to determine the CHR vs. HC status of the par-

ticipant (Miller et al., 1999) and to assess symp-

tomatology. The Structured Clinical Interview for

the DSM (First, 1997) was used to rule out Axis I

psychotic disorder diagnoses within both groups.

Written informed consent was obtained from

all participants. Data collection took place in a

research lab setting and was approved by the insti-

tutional review board at Northwestern University.

3.2 Participant Measures

We obtained self-reported demographic informa-

tion from participants (including age, sex, educa-

tion level, and racial identity). In addition, partici-

pants completed the Word Reading subtest of the

fourth edition of the Wide Range Achievement Test

(WRAT) (Wilkinson and Robertson, 2006), which

is a measure of scholastic achievement, strongly
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associated with general intelligence (Johnstone

et al., 1996). As described, symptom severity was

measured using the SIPS clinical interview. Our

analyses focused on the following symptom items:

P5 (“disorganized communication”) (range 0-6),

N5 (“ideational richness”) (0-6), and D2 (“bizarre

thinking”) (0-6), in addition to the positive symp-

toms subscale total (0-30), the negative symptoms

subscale total (0-36), and the disorganized symp-

toms subscale total (0-24) (see Miller et al. (1999),

McGlashan et al. (2001), and Appendix A for more

details about the SIPS).

3.3 Speech Measures

3.3.1 Speech Elicitation

Participants were prompted to describe (1) a chal-

lenge they had overcome, (2) a self-defining mem-

ory, (3) a turning-point memory, and (4) an unusual

memory (see Appendix B for full prompts). Their

responses were professionally transcribed. For the

CHR group, responses were 275 words long on

average (range: 111-835 words), while for the HC

group, responses were 255 words long on average

(range: 98-559 words). We analyze the first full

uninterrupted response participants provided and

remove the following filler words: um, uh, you

know, I mean, okay, so, actually basically, right,

yeah as in Iter et al. (2018) (see Appendix E for

analyses with filler words included). We analyzed

each participant’s four responses separately before

averaging them to obtain a mean coherence and a

mean tangentiality score for each individual.

3.3.2 Automated Coherence/Tangentiality

Measures

We obtain a measure of coherence, using the same

word embedding methods used in past work on

both psychosis and CHR populations (Bedi et al.,

2015; Corcoran et al., 2018). At a high-level, this

measure represents how similar, on average, the ad-

jacent sentences in each participant’s speech sam-

ples are to one another. If their sentences tend to

be dissimilar to one another, then this is taken as

evidence of incoherence.

To do this, we represent each word in the speech

sample as a vector (using one of three pre-trained

word embedding models e.g., word2vec), and com-

bine the vectors of the words in a sentence (using

one of 4 methods e.g., by averaging the word vec-

tors) to obtain a vector for each sentence. We then

calculate the cosine similarity between each pair

of adjacent sentences, and average these, to obtain

one coherence score per speech sample. We av-

erage across speech samples to obtain one overall

score per participant.

We also obtain a measure of tangentiality as in

Elvevåg et al. (2007) and Iter et al. (2018). At a

high-level, this measure represents how quickly the

topic of the speech sample changes. To do this,

with sentence-level vectors in hand, we calculate

the cosine similarity between the first sentence of a

speech sample and each subsequent sentence (i.e.,

sentence 1 vs. sentence 2, sentence 1 vs. sentence

3, and so forth). We then fit a linear regression

model to these values, treating the sentence num-

ber as the independent variable and the similarity

score against the first sentence as the dependent

variable. We use the slope of this line as the tan-

gentiality measure. As with coherence, we obtain

one measure for each speech sample, which we

average within participants to obtain one overall

tangentiality score per participant.

We follow Iter et al. (2018) in deciding which

embedding models to use to obtain the sentence-

level vector representations needed for these mea-

sures. We use either LSA (Landauer et al., 1998),

GLoVE (Pennington et al., 2014), or word2vec

(Mikolov et al., 2013) to obtain word-level vec-

tors.1 For sentence embedding methods, we sim-

ply average the vectors of all of the words in the

sentence (Mean(All)), or use one of three meth-

ods that puts more weight on the content words

of the sentence. Mean(Content) averages only

the content word vectors of the sentence. TF-IDF

divides each word’s embedding by its frequency

(operationalized as the number of times it occurs

in a large corpus, like Wikipedia), essentially cal-

culating a weighted average where more frequent

words (e.g.,‘the’) are given less weight (Lintean

et al., 2010). SIF also computes a weighted aver-

age for each sentence, but then removes the projec-

tion of the first principal component of the singular

value decomposition of the sentence embedding

matrix, which removes “semantically meaningless

directions” (Arora et al., 2017). Finally, we use

sent2vec, which works similarly to word2vec but

on the sentence level: it directly learns sentence

representations that predict neighboring sentences

(Pagliardini et al., 2017). Using these methods,

we obtain one coherence score per participant for

1We focus on LSA, GLoVE, word2vec, and sent2vec in
the main text to align with past work, but Appendix D shows
that results are qualitatively similar for the more modern and
contextualized ELMo and BERT embeddings.
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each combination of sentence and word embedding

models, plus one for sent2vec (13 total). We re-

fer the reader to Corcoran et al. (2018), Iter et al.

(2018), and Hitczenko et al. (2020) for more details

on embedding models.

3.3.3 Other Speech Measures

In addition to automated coherence and tangen-

tiality, we calculated the average sentence length

(number of words per sentence) for each participant

as well as a measure of each participant’s lexical

diversity. For lexical diversity, we used the moving

average type-to-token ratio (MATTR) with a win-

dow of 50 words (Covington and McFall, 2010),

which calculates the word type to word token ratio

over each overlapping window of 50 words, and

then averages them to obtain one overall measure

of lexical diversity.

3.4 Analyses and Predictions

First, we ask whether there are group differences in

coherence and tangentiality between the CHR and

HC groups by running two sample t-tests as in past

work. We expect to observe significant differences

between the groups, with the HC group being more

coherent and less tangential than the CHR group.

Second, we ask whether these automated scores

correlate with item scores on the SIPS clinical in-

terview related to disorganized speech or thought

disorder, as well as with overall symptomatology

measured by the SIPS. Where tested, past work has

reported mixed findings, with some seeing correla-

tions between automated measures and symptom

severity (Just et al., 2019), but many not (Corcoran

et al., 2018; Iter et al., 2018). As these automated

measures are intended to measure thought disorder,

we expect to find that worse symptom severity (i.e.

higher symptom scores) is associated with worse

coherence scores (i.e. lower coherence scores), es-

pecially for P5 (“disorganized communication”).

Finally, we ask whether these automated linguis-

tic scores relate to other linguistic properties of the

speech (i.e., sentence length and lexical diversity)

as well as sociodemographic factors of the individ-

uals speaking (i.e., scholastic achievement/general

intelligence, education, race, etc.). We calculate

correlations for continuous measures and compare

groups for discrete measures.

4 Results

4.1 Question 1: Are there CHR vs HC group

differences in coherence/tangentiality?

As shown in Table 2, we find significant differences

in coherence between the CHR and HC groups

in 3 out of 13 of the methods we report (see Ap-

pendix C.1 for difference plots). However, it is

important to note that these differences may be spu-

rious based on multiple comparisons; with a Bon-

feronni correction (α = .004), these differences no

longer reach significance. In 6 out of the remaining

10 methods, the healthy controls have numerically,

but non-significantly, greater coherence scores than

the CHR group. In the remaining 4 methods, the

groups show near identical scores.

For tangentiality, we do not find any significant

differences in tangentiality between the CHR and

HC groups (Table 3). As a result, we do not conduct

additional analyses of this measure.

These results suggest that these automated mea-

sures of thought disorder are very sensitive to the

particular method used to derive it. Notably, previ-

ous work has not found any particular method to be

consistently successful in separating groups. One

of the methods where we find a significant differ-

ence is also successful in Just et al. (2019), who

find significant coherence differences using TF-IDF

GLoVE and no significant differences in tangen-

tiality. However, Iter et al. (2018) only found dif-

ferences in coherence using SIF word2vec, while

other papers (Bedi et al., 2015; Elvevåg et al., 2007;

Corcoran et al., 2018) have found significant differ-

ences using LSA Mean(All).

Overall, while we do not find group differ-

ences in tangentiality, we do find the predicted

group differences in coherence between CHR and

HC in a subset of cases. However, more work

needs to be done to understand whether these

are meaningful effects and what they reflect. To

this end, for the remainder of the paper, we ask

whether these automated linguistic methods of

coherence relate to symptoms or other linguis-

tic/sociodemographic factors. For these analyses,

we zoom in on the sentence/word embedding mod-

els that separate CHR from HC groups. We present

GLoVE Mean(Content) analyses in the main text;

all other analyses are presented in Appendix C.
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Sentence Word CHR mean HC mean CHR sd HC sd T-stat P-value

Mean LSA 0.58 0.60 0.07 0.06 -1.12 0.13

(All) word2vec 0.79 0.80 0.04 0.04 -0.94 0.18

GLoVE 0.92 0.93 0.02 0.02 -1.89 0.03

Mean LSA 0.31 0.30 0.07 0.06 0.77 0.77

(Content) word2vec 0.63 0.65 0.05 0.06 -1.17 0.12

GLoVE 0.81 0.82 0.04 0.03 -1.74 0.04

TF-IDF LSA 0.42 0.44 0.07 0.07 -1.05 0.15

word2vec 0.75 0.76 0.04 0.05 -0.71 0.24

GLoVE 0.87 0.89 0.03 0.02 -2.14 0.02

SIF LSA 0.08 0.08 0.09 0.07 0.23 0.59

word2vec 0.03 0.02 0.06 0.06 0.96 0.83

GLoVE 0.05 0.04 0.06 0.06 1.08 0.86

sent2vec sent2vec 0.47 0.48 0.04 0.05 -1.21 0.11

Table 2: Coherence results. We see a significant difference between groups in 3/13 methods (in bold), though these

differences are no longer significant using the Bonferroni correction for multiple comparisons (α = 0.004).

Sentence Word CHR mean HC mean CHR sd HC sd T-stat P-value

Mean LSA -0.007 -0.018 0.03 0.05 1.18 0.88

(All) word2vec -0.007 -0.01 0.02 0.02 0.68 0.75

GLoVE -0.002 -0.004 0.01 0.01 0.94 0.83

Mean LSA -0.017 -0.013 0.04 0.03 -0.5 0.31

(Content) word2vec -0.013 -0.016 0.02 0.03 0.57 0.72

GLoVE -0.007 -0.01 0.02 0.02 0.76 0.78

TF-IDF LSA -0.011 -0.017 0.04 0.04 0.59 0.72

word2vec -0.008 -0.011 0.02 0.03 0.52 0.70

GLoVE -0.004 -0.006 0.01 0.02 0.8 0.79

SIF LSA -0.02 -0.029 0.07 0.07 0.59 0.72

word2vec -0.029 -0.039 0.05 0.08 0.66 0.74

GLoVE -0.034 -0.04 0.06 0.07 0.41 0.66

sent2vec sent2vec -0.013 -0.011 0.03 0.03 -0.34 0.37

Table 3: Tangentiality results. We observe no significant differences between the CHR vs. HC groups.

4.2 Question 2: Do automated coherence

scores correlate with symptoms?

Do lower coherence scores (within the CHR group)

relate to worse thought disorder? We examine this

using symptoms in the SIPS that are related to

thought disorder. As shown in Figure 1, we find

generally poor correlations. The computational

measures intended to measure thought disorder do

not show any correlation with currently used clin-

ical interviews measuring thought disorder in the

CHR group. This result adds to a growing but

mixed literature on the relationship between auto-

mated linguistic measures and the symptoms they

are intended to measure.

Of past work that has reported correlations, Cor-

coran et al. (2018) and Iter et al. (2018) found no

correlation between coherence scores and clinical

interview symptoms, while Just et al. (2019) found

their coherence measures did correlate negatively

with symptom severity as measured by the Scale for

the Assessment of Negative Symptoms (Andreasen,

1989). Bedi et al. (2015) included coherence in

a canonical correlation identifying the maximal

correlation between a linear combination of 3 lin-

guistic features – coherence, maximal word phrase

length, and number of determiners – and a linear

combination of the positive and negative SIPS sub-

scales. They found an overall positive correlation,

but it’s unclear what role coherence played in driv-

ing this correlation. Taken together, our results and

previous results suggests that coherence scores are

not reliably related to clinical measures of thought
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Figure 1: Correlation between mean coherence scores

and relevant SIPS subitems and SIPS symptom totals.

The lines show the estimated linear regression models

and the shading shows 95% confidence intervals. Each

point represents one participant.

disorders; however, a high-powered investigation

is warranted.

4.3 Question 3: Do automated coherence

scores correlate with linguistic features of

speech samples or sociodemographic

factors of the speaker?

If these measures are not capturing thought disorder

symptoms, what are they measuring? To examine

this issue, we examine the relationship of these

computational measures to surface linguistic fea-

tures of the speech samples and sociodemographic

factors of the speakers. We focus on three fea-

tures that show a significant relationship to this

‘coherence’ measure – sentence length, a measure

of general intelligence, and racial identity of the

speaker – and report non-significant correlations in

Appendix C.

4.3.1 Sentence length

We find a significant positive correlation between

average sentence length and automated measures of

coherence: that is, longer sentences are measured

as more coherent (r (75)=0.66; p<0.001) all else

being equal (Figure 2).

This raises the possibility that the observed

CHR-HC difference simply reflects differences

in average sentence length (CHR mean: 29

words/sentence; HC mean: 31 words/sentence).

To test for this possibility, we calculated the distri-

bution of group differences predicted by a length-
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Figure 2: Correlation between mean coherence scores

and average sentence length. The line show the esti-

mated linear regression model and the shading shows

95% confidence intervals. Each point represents one

participant, colored by CHR status.
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Figure 3: Length-only baseline distribution of HC-

CHR differences in coherence (1000 samples). The

vertical line shows the location of the true difference

in this distribution.

only baseline. In particular, we use a Monte Carlo

method to compare the group differences in coher-

ence scores against a surface-only baseline based

on sentence length. We estimate this baseline by

randomly replacing each word in our corpus – gen-

erating random word strings matching the length

of our participants’ productions. We then recal-

culate the group difference, providing an estimate

of the difference in coherence scores predicted to

occur by differences in sentence length alone. This

procedure is repeated 1000 times to estimate the

distribution of baseline differences. If the differ-

ence in coherence scores is based on the content

of what participants are saying, then the observed

difference should lie at the extreme tail of this base-

line distribution.

As shown in Figure 3, only 3.9% of the runs

had a more extreme HC-CHR difference than ob-

served in the original participant data (shown with

the blue dotted line), suggesting that there is some-

thing in the linguistic content that is contributing to
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the difference observed above and beyond the sen-

tence lengths. However, we also note that the base-

line difference is always greater than zero. Even

though we completely randomized the content of

the speech in both groups, the sentence length dif-

ferences observed between the groups still resulted

in greater coherence for the HC group, suggest-

ing that sentence length plays a large role in the

observed outcomes. Group differences can be ob-

tained without considering any of the linguistic

content spoken by participants. This is not a good

property for this measure.

4.3.2 WRAT scores
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Figure 4: WRAT vs. Coherence Scores. The line shows

the estimated linear regression model and the shading

shows 95% confidence intervals. Each point represents

one participant, colored by CHR status.

Next we observe in Figure 4 that higher coher-

ence is associated with higher scores on the WRAT,

a measure of scholastic achievement, associated

with general intelligence (r(75)=0.36; p<0.001).

Those with higher WRAT scores tend to produce

more coherent speech (though it could also be that

they tend to produce longer sentences). As with

sentence length, we cannot make conclusions about

causality here. However, this finding again reduces

our confidence in the use of this computational

measure as an index of thought disorder. Future

work utilizing this coherence measure must control

for the correlation with WRAT.

4.3.3 Race

Finally, as shown in Figure 5, coherence scores

may be correlated with racial identity. In our sam-

ple, Black speakers’ speech was measured as less

‘coherent’ than that of White speakers’ (all else

being equal). However, it is critical to note that

these analyses were based on a small numbers of

participants (including just 7 Black participants
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Figure 5: Coherence scores by race and clinical group.

Each black point represents the mean coherence score

of one individual grouped by their race (Black vs.

White) and clinical status (HC vs. CHR). The four

white dots represent the mean value for each group.

in the healthy control group), and this warrants a

high-powered study directly investigating the re-

lationship between coherence models and racial

identity.

Nonetheless, this is a troubling finding that calls

for a deeper dive into understanding what factors

these computational measures are sensitive to be-

fore they can be used clinically. In particular, this

result parallels other findings from the computa-

tional world - e.g., that ASR systems and computer

vision systems work less well for Black individuals

than White individuals (Koenecke et al., 2020; Buo-

lamwini and Gebru, 2018). As the field develops, it

is crucial to place analyses such as these front and

center to ensure that this does not become another

domain that perpetuates existing systemic biases.

4.3.4 Relationship between effects

In summary, we observed relationships between

automated coherence scores and (1) average sen-

tence length, (2) intelligence/achievement scores as

measured by the WRAT, and (3) racial identity. To

get a better understanding of these effects and their

interrelationship, we fit a linear model predicting

average coherence scores from average sentence

length, WRAT score, and race. We found that co-

herence scores were significantly higher for partici-

pants with longer average sentences (β̂ = 0.001, p =

0.009), but found no other significant effects – sug-

gesting that the relationships between coherence

and racial identity as well as scholastic achieve-

ment reflected correlations of these factors with

sentence length. Indeed, White speakers produced
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longer sentences than Black speakers (White mean:

32 words, Black mean: 26 words) and individuals

with higher WRAT scores produced longer sen-

tences and passages than those with lower WRAT

scores (r = 0.3; p = 0.01).

Overall, the findings in this section make clear

that there is more work to be done to ensure that

group differences reported in this body of literature

reflect the differences in thought disorder they are

meant to reflect, especially given non-correlations

with SIPS symptoms measuring thought disorder.

Of all of the factors, including thought disorder

symptoms, sentence length was the factor that most

correlated with coherence scores. Our results not

only suggest that these measures may not be mea-

suring what we think they are, but that this could

have harmful downstream consequences (e.g., pre-

dicting lower coherence scores for Black speakers

than White speakers).

5 Discussion

We tested methods of quantifying coherence and

tangentiality, applying them to speech samples pro-

duced by individuals at clinical high-risk for psy-

chosis. We found group differences between the

CHR and HC groups for a subset of the tested meth-

ods (3 out of 13, significant only at uncorrected α

= .05). Surprisingly, we did not find significant cor-

relations with items from clinical interviews that

measure thought disorder (i.e. what these measures

are meant to capture). In order for these measures

to be useful clinically, it is important to show con-

struct validity – that the measures actually index

what they are meant to, rather than other features

of the speech/speaker. This is especially true as the

methods we use here have been shown to exhibit

potentially harmful biases in other work. To this

end, our final exploratory analyses were designed

to better understand what these measures are cap-

turing. We found correlations with sentence length,

WRAT scores, and race, which suggests that these

methods partially reflect properties that these mea-

sures are not intended to measure. These results

suggest that there is substantial and careful work

that needs to be done for these methods to be useful

clinically.

5.1 Group differences are sensitive to the

methods used and vary across papers

Replicating past work, we find group differences in

coherence between the CHR vs. HC groups. How-

ever, as in past work using multiple word/sentence

embedding methods, we find this difference in a

subset of cases, suggesting this finding is sensitive

to the particular method used. We fail to find group

differences in tangentiality between CHR vs. HC

groups. While these results overlap with those of

one paper (Just et al., 2019), they do not overlap

with other work (Corcoran et al., 2018; Bedi et al.,

2015; Elvevåg et al., 2007; Iter et al., 2018) (and

there is substantial variation within these papers

as well). We offer two possible factors underly-

ing these diverging findings. First, each paper has

made different methodological decisions. Research

differs in: the kinds of speech samples collected

(shorter vs. longer length, individuals with vs. at-

risk for psychosis); the analysis methods (some

researchers remove fillers but others do not); and

modeling decisions (some compare similarity be-

tween sentences, while others compare similarity

between windows of words of length N), and so

forth. These differences could easily give rise to

differences across studies. Second, the true effect

size could be quite small to begin with, especially

in the CHR group who displays attenuated symp-

toms, and we know there is substantial heterogene-

ity between individuals. Some healthy individuals

show linguistic disturbances, while some individ-

uals with psychosis do not show any or show dis-

turbances of almost opposite nature (e.g., persever-

ation, staying fixed on a single topic) (Andreasen,

1979). The substantial heterogeneity and differ-

ing sample sizes observed could also give rise to

substantial differences between studies.

Overall, while past work has highlighted suc-

cesses in the important goal of establishing differ-

ences between groups, it is critical to acknowledge

where this line of work has fallen short: small

changes in the particular methods used can sub-

stantially change the outcome, and which methods

are successful varies unpredictably between studies.

Moving forward, it may be useful to better align the

methodological, analytical, and modeling choices

across studies to better understand what gives rise

to these differences. Due to the heterogeneity ob-

served, it may also be worth focusing less on group

differences and more on symptoms and outcome

measures. In addition, as these methods continue

to develop, it may be easier to accurately and more

transparently evaluate their performance, by testing

them on speech samples that are known to contain

vs. not contain the particular studied linguistic dis-
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turbances. This shift in focus may allow us to gain

a better understanding of what these measures re-

flect and how they can be useful on an individual

basis.

5.2 Lack of correlations with SIPS thought

disorder symptoms

We did not find correlations with the SIPS items

that are thought to measure disorganized language

and thought disorder. We note that is possible that,

with 36 CHR participants, we did not have suf-

ficient power to detect existing correlations with

SIPS symptoms. However, this null finding adds to

a growing literature of inconsistent findings, with

some past work finding correlations with thought

disorder and/or other clinical symptoms, but other

past work failing to find these same correlations.

This underscores the importance of doing careful

work to establish construct validity with automated

measures. Rigorous testing is needed to verify that

novel measures relate to the properties of speech

and cognition that they are intended to index.

5.3 Coherence scores correlate with sentence

length and speaker sociodemographics

Perhaps most troublingly, we find that the differ-

ences in coherence between groups partially reflect

irrelevant surface properties of the speech and so-

ciodemographic qualities of the speakers. In fact,

the single factor that best correlated with these mea-

sures was the length of the sentence. On the one

hand, this raises concern that we are not measur-

ing what we think we are. On the other hand, due

to the fact that other factors (e.g., racial identity,

achievement and intelligence, as measured by the

WRAT) correlate with differences in average sen-

tence length, this could have downstream harmful

consequences (e.g., rating Black speakers as less

coherent than White speakers due to differences

unrelated to coherence). Overall, these results pro-

vide evidence that there is substantial work to be

done to understand what these measures reflect to

a degree where they can be used clinically.

5.4 Ethics and Broader Impacts Statement

Ethical use of computational measures like those

studied here – especially in the high-stakes context

of clinical care – requires us to devote substantial

attention to potential biases in our measures. To

that end, we recommend that future researchers in

this area conduct and report analyses examining

relations to symptoms, as well as the linguistic and

sociodemographic factors studied here. This will

allow us to gain a better understanding of what

these measures reflect, and make sure that they are

developed to be equally useful for all. To this end,

we provide all of our code to hopefully facilitate

these crucial cross-study comparisons.2

5.5 Conclusion

Linguistic disturbances characterize psychosis, yet

they have been understudied in the field, largely due

to how time-intensive it is to obtain meaningful and

reliable measures of them. Automated linguistic

methods have the potential to transform the scale

at which we can study and identify these linguistic

disturbances. However, with this strength come

some downsides that the field must address: these

methods are less transparent and can be harder to

interpret. Facing these challenges head-on will

allow us to develop a stronger, more ethical practice

in this important and promising area of research.

Acknowledgements

This work was supported by the National Insti-

tutes of Health (NIH R21 MH119677 and T32

NS047987) and the Canadian Institutes of Health

Research (CIHR DFS-152268). We thank Rachel

Ostrand and Ewan Dunbar for their helpful sugges-

tions and feedback on this work.

References

Nancy C Andreasen. 1979. Thought, language,
and communication disorders: II. Diagnostic
significance. Archives of General Psychiatry,
36(12):1325–1330.

Nancy C Andreasen. 1986. Scale for the assessment
of thought, language, and communication (TLC).
Schizophrenia Bulletin, 12(3):473.

Nancy C Andreasen. 1989. The scale for the assess-
ment of negative symptoms (SANS): Conceptual
and theoretical foundations. The British Journal of
Psychiatry, 155(S7):49–52.

Nancy C Andreasen and William M Grove.
1986. Thought, language, and communica-
tion in schizophrenia: Diagnosis and prognosis.
Schizophrenia Bulletin, 12(3):348–359.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings. In 5th International Conference on Learn-
ing Representations, ICLR 2017.

2github.com/khitczenko/chr_coherence



138

Carrie E Bearden, Keng Nei Wu, Rochelle Caplan,
and Tyrone D Cannon. 2011. Thought disorder and
communication deviance as predictors of outcome in
youth at clinical high risk for psychosis. Journal of
the American Academy of Child & Adolescent Psy-
chiatry, 50(7):669–680.

Gillinder Bedi, Facundo Carrillo, Guillermo A Cec-
chi, Diego Fernández Slezak, Mariano Sigman,
Natália B Mota, Sidarta Ribeiro, Daniel C Javitt,
Mauro Copelli, and Cheryl M Corcoran. 2015. Au-
tomated analysis of free speech predicts psychosis
onset in high-risk youths. npj Schizophrenia, 1(1):1–
7.

Eugen Bleuler. 1950. Dementia praecox or the group
of schizophrenias. International Universities Press.

Tolga Bolukbasi, Kai-Wei Chang, James Zou,
Venkatesh Saligrama, and Adam Kalai. 2016.
Man is to computer programmer as woman is to
homemaker? Debiasing word embeddings. In Pro-
ceedings of the 30th International Conference on
Neural Information Processing Systems (NeurIPS),
pages 4356–4364.

Joy Buolamwini and Timnit Gebru. 2018. Gender
shades: Intersectional accuracy disparities in com-
mercial gender classification. In Conference on Fair-
ness, Accountability and Transparency, pages 77–
91.

Aylin Caliskan, Joanna J Bryson, and Arvind
Narayanan. 2017. Semantics derived automatically
from language corpora contain human-like biases.
Science, 356(6334):183–186.

Cheryl M Corcoran, Facundo Carrillo, Diego
Fernández-Slezak, Gillinder Bedi, Casimir Klim,
Daniel C Javitt, Carrie E Bearden, and Guillermo A
Cecchi. 2018. Prediction of psychosis across pro-
tocols and risk cohorts using automated language
analysis. World Psychiatry, 17(1):67–75.

Cheryl M Corcoran, Vijay A Mittal, Carrie E Bear-
den, Raquel E Gur, Kasia Hitczenko, Zarina Bil-
grami, Aleksandar Savic, Guillermo A Cecchi, and
Phillip Wolff. 2020. Language as a biomarker for
psychosis: A natural language processing approach.
Schizophrenia Research, 226:158–166.

Michael A Covington and Joe D McFall. 2010. Cutting
the gordian knot: The moving-average type–token
ratio (MATTR). Journal of Quantitative Linguistics,
17(2):94–100.

Arsime Demjaha, Sara Weinstein, Daniel Stahl, Fern
Day, Lucia Valmaggia, Grazia Rutigliano, Andrea
De Micheli, Paolo Fusar-Poli, and Philip McGuire.
2017. Formal thought disorder in people at ultra-
high risk of psychosis. BJPsych Open, 3(4):165–
170.

Brita Elvevåg, Peter W Foltz, Daniel R Weinberger,
and Terry E Goldberg. 2007. Quantifying incoher-
ence in speech: An automated methodology and

novel application to schizophrenia. Schizophrenia
Research, 93(1-3):304–316.

Michael B First. 1997. Structured Clinical Interview
for DSM-IV Axis I disorders. Biometrics Research
Department.

Tina Gupta, Susan J Hespos, William S Horton, and
Vijay A Mittal. 2018. Automated analysis of writ-
ten narratives reveals abnormalities in referential
cohesion in youth at ultra high risk for psychosis.
Schizophrenia Research, 192:82–88.

Kasia Hitczenko, Vijay A Mittal, and Matthew
Goldrick. 2020. Understanding language abnormal-
ities and associated clinical markers in psychosis:
The promise of computational methods. Schizophre-
nia Bulletin.

Dan Iter, Jong Yoon, and Dan Jurafsky. 2018. Auto-
matic detection of incoherent speech for diagnosing
schizophrenia. In Proceedings of the Fifth Workshop
on Computational Linguistics and Clinical Psychol-
ogy: From Keyboard to Clinic, pages 136–146.

Brick Johnstone, Charles D Callahan, Cynthia J Kapila,
and Dawn E Bouman. 1996. The comparability
of the WRAT-R reading test and NAART as esti-
mates of premorbid intelligence in neurologically
impaired patients. Archives of Clinical Neuropsy-
chology, 11(6):513–519.

Sandra Just, Erik Haegert, Nora Kořánová, Anna-Lena
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A More Information on the Structured Interview for Psychosis-Risk Syndromes

The SIPS is a clinical interview administered by experienced clinicians that is used to classify individuals

as being at clinical high-risk for psychosis. It consists of 19 symptoms that are grouped into four symptom

classes: 5 positive (P) symptoms, 6 negative (N) symptoms, 4 disorganized (D) symptoms, and 4 general

(G) symptoms. Patients are rated along each of the 19 individual symptoms (scores for each individual

symptom range from 0, least severe, to 6, most severe). The scores on the individual symptoms within

each of the four classes are totaled to get total positive (range 0-30), negative (range 0-36), disorganized

(range 0-24), and general (range 0-24) symptom scores. Our analyses focus on items P5 (“Disorganized

Communication”), N5 (“Ideational Richness”), and D2 (“Bizarre Thoughts”), as well as the positive,

negative, and disorganized symptom totals, as described below. We refer readers to Miller et al. (1999)

and McGlashan et al. (2001) for more information about the SIPS.

Positive Symptoms [0-30]: There are five positive symptoms: P1 (Unusual Thought Content/Delusional

Ideas), P2 (Suspiciousness/Persecutory Ideas), P3 (Gradiose Ideas), P4 (Perceptual Abnormali-

ties/Hallucinations), and P5 (Disorganized Communication).

P5- Disorganized Communication [0-6]: The types of inquiries used to establish the score include:

• Do people ever tell you that they can’t understand you? Do people ever seem to have difficulty

understanding you?

• Are you aware of any ongoing difficulties getting your point across, such as finding yourself rambling

or going off track when you talk?

• Do you ever completely lose your train of thought or speech, like suddenly blanking out?

Negative Symptoms [0-36]: There are six negative symptoms: N1 (Social Anhedonia), N2 (Avolition),

N3 (Expression of Emotion), N4 (Experience of Emotions and Self), N5 (Ideational Richness), and N6

(Occupational Functioning).

N5- Ideational Richness [0-6]: The types of inquiries used to establish the score include:

• Do you sometimes find it hard to understand what people are trying to tell you because you don’t

understand what they mean?

• Do people more and more use words that you don’t understand?

Disorganized Symptoms [0-24]: There are four disorganized symptoms: D1 (Odd Behavior or

Appearance), D2 (Bizarre Thinking), D3 (Trouble with Focus and Attention), and D4 (Impairment in

Personal Hygiene). In our analyses, we use the total disorganized score (range: 0-24), as well as the D2

item (bizarre thinking).

D2- Bizarre Thinking [0-6]: The types of inquiries used to establish the score include:

• Do people ever say your ideas are unusual or that the way you think is strange or illogical?

General Symptoms [0-24]: We do not include these symptoms in our analyses, but there are four general

symptoms: G1 (Sleep Disturbance), G2 (Dysphoric Mood), G3 (Motor Disturbances), and G4 (Impaired

Tolerance to Normal Stress).
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B Complete Question Prompts

• Challenge: Looking back over your life, what do you think is the single greatest challenge you have

ever faced? Tell me the story of that challenge, what it is or was, how did the challenge or problem

develop, and how did you address or deal with the challenge or problem?

• Self-Defining: A self-defining memory is a scene or an episode from your life that was very important

for how you see yourself. This would be something that happened at least one year ago that you have

thought about many times since it happened so that the memory of it is clear and familiar to you.

This scene or episode helps you know who you are as a person. You might even tell this story to

a friend if you wanted to help them understand you better. I’d like you to take a moment to think

of a self-defining memory like this and then tell me the story of that memory and specifically what

happened, when and where it happened, and who was involved?

• Turning Point: In most people’s lives we experience episodes that change the direction of our lives

or change how we see ourselves in some important way. We call those memories turning points.

Looking back over your life, there may be a few key moments that stand out as turning points or

episodes that marked an important change in you or your life story. I’d like you to identify a particular

memory that you see as a turning point in your life and then tell me the story about that turning point:

what happened, when and where it happened, and who was involved?

• Unusual: Next I’ll ask you about an unusual experience that you might have had. Any unusual,

strange or profound things that are hard to explain, for example, some coincidences, supernatural

events, seeing visions of spirits, feeling like you’re the center of attention, like you have special

powers, or like one of your dreams had really happened. These experiences might be difficult to

explain and might feel like the world is not as it seems or like your mind is playing tricks on you in

some way. Take a moment to think of an unusual experience like this and then tell me the story of

that experience: what happened, when and where it happened, and who was involved?
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C Additional Analyses: Participant’s Main Response with Fillers Removed

The main text reports results from running the participant’s first main response, with fillers removed.

This section provides additional analyses that were omitted from the main text, including correlations

for all three models that were found to be significant (GLoVE TF-IDF, GLoVE Mean(All), and GLoVE

Mean(Content)), as well as non-significant correlations (e.g., for age and education).

C.1 Group Differences
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Figure 6: Coherence scores by group for each of the three methods that yield significant differences between the

CHR and HC groups: GLoVE TF-IDF, GLoVE Mean(All), and GLoVE Mean(Content).

C.2 Correlations with thought disorder symptoms
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Figure 7: Correlations between coherence scores and SIPS symptoms for methods that yielded significant results

(from left to right: GLoVE TF-IDF, GLoVE Mean(All), GLoVE Mean(Content)). Most correlations are not sig-

nificant with one exception: GLoVE TF-IDF coherence scores correlate negatively with SIPS Total Disorganized

Scores (r = -0.34, p = 0.049).



143

0.80

0.85

0.90

20 30 40 50

Average Sentence Length
(in words)

M
e

a
n

 C
o

h
e

re
n

c
e

Group

chr

hc

R=0.502 (p<0.001)

0.86

0.90

0.94

20 30 40 50

Average Sentence Length
(in words)

M
e

a
n

 C
o

h
e

re
n

c
e

Group

chr

hc

R=0.637 (p<0.001)

0.70

0.75

0.80

0.85

0.90

20 30 40 50

Average Sentence Length
(in words)

M
e

a
n

 C
o

h
e

re
n

c
e

Group

chr

hc

R=0.635 (p<0.001)

Figure 8: In all three cases (L-to-R: GLoVE TF-IDF, GLoVE Mean(All), GLoVE Mean(Content)), we observe sig-

nificant positive correlations between average sentence length and average coherence with correlation coefficients

ranging from 0.5 to 0.64.

C.3 Correlations with sentence length
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Figure 9: For each of the three significant methods (L-to-R: GLoVE TF-IDF, GLoVE Mean(All), GLoVE

Mean(Content)), we randomly replace words and recalculate the coherence scores 1000 times. This graph shows

the distribution of HC-CHR differences over these 1000 runs. For all three graphs, the vast majority of the dif-

ferences are positive, meaning that the HC group scores as more coherent than the CHR group despite complete

randomization of words. Nonetheless, the true difference (shown in the blue dotted line) is more extreme than most

(GLoVE Mean(All), GLoVE Mean(Content)) or all (GLoVE TF-IDF) of the 1000 differences, suggesting that the

coherence measures are partially based on the content of the speech.

C.4 Correlations with lexical diversity
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Figure 10: Left-to-right: GLoVE TF-IDF, GLoVE Mean(All), GLoVE Mean(Content). Lexical diversity, as mea-

sured by MATTR, does not correlate with coherence scores, though the correlation approaches significance for

GLoVE Mean(Content), such that greater lexical diversity is associated with greater average coherence. As these

automated measures calculate similarity between sentences, we might expect that repeating words would be asso-

ciated with greater coherence scores. However, we do not observe this effect.
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C.5 Correlations with Scholastic Achievement and Intelligence (WRAT)
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Figure 11: Left-to-right: GLoVE TF-IDF, GLoVE Mean(All), GLoVE Mean(Content). In all three methods,

WRAT scores correlate positively with coherence scores, such that greater coherence is associated with higher

WRAT scores. Correlation coefficients range from 0.29 to 0.36.
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Figure 12: Left-to-right: GLoVE TF-IDF, GLoVE Mean(All), GLoVE Mean(Content). Coherence scores by CHR

status (HC vs. CHR) and racial identity (Black vs. White). Across the three methods, these automated measures

rate Black speakers as less coherent than White speakers.
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Figure 13: Left-to-right: GLoVE TF-IDF, GLoVE Mean(All), GLoVE Mean(Content). As expected, we find no

correlation between age and coherence scores, although we note that this relationship has been observed in past

work with older individuals scoring as more coherent (Corcoran et al., 2018).
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C.8 Education
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Figure 14: Left-to-right: GLoVE TF-IDF, GLoVE Mean(All), GLoVE Mean(Content). Finally, as expected, we

find no correlation between level of education and coherence scores.
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D Contextualized Word Embeddings (Fillers Removed)

To align with past work, the main text reports results using word2vec, GLoVE, and LSA embeddings.

Here, we show similar results for the more modern, contextualized embeddings from BERT and ELMo.

The analyses for ELMo mirror those for word2vec, GLoVE, and LSA: once we have word embeddings

from ELMo, we obtain sentence embeddings by averaging all of the words (Mean(All)) or just the content

words (Mean(Content)) or using TF-IDF or SIF weights, which both essentially give more weight to more

content-bearing words.

For BERT, however, we used a different approach, taking advantage of in-built features of the model.

In particular, BERT embeddings are trained by giving the model two sentences and having the model

predict whether or not one immediately followed the other (Next Sentence Prediction). That means that

given a first sentence and a second sentence, we can obtain a score for how likely it is that the second

sentence directly follows the first one. We used this to obtain coherence scores for each participant’s

speech sample, with the idea that more coherent passages will have adjacent sentences that are more

predictive of one another. We obtained BERT embeddings for each word in the participant’s speech. Then,

directly from these embeddings, for each pair of adjacent sentences in a speech sample, we obtained

the model’s score for how likely it was that the second sentence followed the first sentence (BERT Next

Sentence Prediction). We averaged these scores within speech samples to obtain one coherence score for

each speech sample (which, in turn, were averaged to obtain one coherence score per participant).

Word Sentence CHR mean HC mean CHR sd HC sd T-stat P-value

ELMo Mean (All) 0.71 0.72 0.03 0.03 -0.86 0.20

Mean (Content) 0.62 0.63 0.05 0.05 -0.68 0.25

TF-IDF 0.69 0.70 0.03 0.04 -0.85 0.20

SIF 0.02 0.01 0.05 0.05 0.98 0.84

BERT n/a 0.977 0.983 0.05 0.05 -1.07 0.14

Table 4: Coherence results, using ELMo embeddings. We find no significant differences between groups.

Although we found no significant differences between groups, we checked whether these embeddings

also exhibited the same crucial problem of being correlated with sentence length and found that they did

(Figure 15). The effect is reduced using BERT, as many sentence pairs are predicted to be adjacent with

scores approaching 1; however, we still observe a significant correlation between average sentence length

and mean coherence, finding that participants who produce shorter sentences are relatively more likely to

have lower coherence scores.
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Figure 15: Left-to-right: ELMo (Mean(All)), BERT (Next Sentence Prediction). In both cases, we see a correlation

between automated coherence scores and sentence length.
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E Including Filler Words

In the main text, we report findings from analyzing the participants’ first uninterrupted response removing

filler words as in Iter et al. (2018). Here, we report results from the same speech samples, but with fillers

included.

E.1 Group Differences

We test for group differences between the CHR and HC groups. As in the main text, we find significant

differences in coherence for a subset of the methods used (here 2/13: GLoVE Mean(All) is no longer

significant), but no significant differences in tangentiality. For the remainder of the analyses, we focus on

the two methods that yielded significant differences between groups: coherence as measured by GLoVE

TF-IDF and GLoVE Mean(Content).

Sentence Word CHR mean HC mean CHR sd HC sd T-stat P-value

Mean LSA 0.57 0.59 0.08 0.07 -1.16 0.12

(All) word2vec 0.80 0.81 0.03 0.04 -0.98 0.17

GLoVE 0.91 0.92 0.03 0.02 -1.55 0.06

Mean LSA 0.32 0.31 0.07 0.07 0.43 0.66

(Content) word2vec 0.64 0.66 0.05 0.06 -1.38 0.09

GLoVE 0.82 0.83 0.04 0.04 -1.81 0.04

TF-IDF LSA 0.42 0.44 0.07 0.08 -1.35 0.09

word2vec 0.78 0.78 0.04 0.05 -0.38 0.35

GLoVE 0.88 0.89 0.03 0.03 -1.75 0.04

SIF LSA 0.10 0.10 0.09 0.07 0.18 0.57

word2vec 0.05 0.04 0.05 0.06 1.37 0.91

GLoVE 0.07 0.06 0.06 0.08 0.96 0.83

sent2vec sent2vec 0.47 0.48 0.05 0.05 -1.37 0.09

Table 5: Coherence results. We see a significant difference between groups in 2/13 methods (GLoVE TF-IDF and

GLoVE Mean(Content)), though these differences are no longer significant using the Bonferroni correction for

multiple comparisons.

Sentence Word CHR mean HC mean CHR sd HC sd T-stat P-value

Mean(All) LSA -0.015 -0.022 0.04 0.05 0.73 0.77

word2vec -0.006 -0.01 0.02 0.02 0.88 0.81

GLoVE -0.004 -0.004 0.02 0.01 0.1 0.54

SIF LSA -0.026 -0.027 0.06 0.06 0.07 0.53

word2vec -0.032 -0.038 0.08 0.07 0.34 0.63

GLoVE -0.038 -0.037 0.08 0.06 -0.02 0.49

TF-IDF LSA -0.016 -0.019 0.04 0.04 0.35 0.64

word2vec -0.005 -0.009 0.02 0.02 0.96 0.83

GLoVE -0.004 -0.006 0.01 0.01 0.5 0.69

Mean(Content) LSA -0.02 -0.014 0.04 0.03 -0.69 0.25

word2vec -0.011 -0.015 0.02 0.03 0.69 0.75

GLoVE -0.007 -0.009 0.02 0.02 0.37 0.64

sent2vec sent2vec -0.017 -0.011 0.03 0.03 -0.84 0.20

Table 6: Tangentiality results. As in the main text, we observe no significant differences between groups.
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E.2 Correlations with thought disorder symptoms
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Figure 16: Correlations between coherence scores and SIPS symptoms for methods that yielded significant results

(left two columns: GLoVE TF-IDF, right two columns: GLoVE Mean(Content)). As in the main text, we observe

no significant correlations between SIPS symptoms and mean coherence.

E.3 Correlations with sentence length
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Figure 17: As in the main text, in both cases (L-to-R: GLoVE TF-IDF, GLoVE Mean(Content)), we observe sig-

nificant positive correlations between average sentence length and average coherence with correlation coefficients.
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Figure 18: Left: GLoVE TF-IDF, Right: GLoVE Mean(Content). As in the case of removing fillers, in both

graphs, the vast majority of the differences are positive, meaning that the HC group scores as more coherent than

the CHR group despite complete randomization of words.
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E.4 Correlations with lexical diversity
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Figure 19: Left-to-right: GLoVE TF-IDF, GLoVE Mean(Content). As in the case of removing fillers, we find no

significant correlation between lexical diversity, as measured by the MATTR, and mean coherence scores.

E.5 Correlations with Scholastic Achievement and Intelligence (WRAT)
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Figure 20: Left-to-right: GLoVE TF-IDF and GLoVE Mean(Content). As in the main text, WRAT scores correlate

positively with coherence scores, such that greater coherence is associated with higher WRAT scores (a measure

of achievement, associated with intelligence).
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Figure 21: Left-to-right: GLoVE TF-IDF and GLoVE Mean(Content). As in the case of removing fillers, we find

that both of these automated methods assign lower coherence scores to Black speakers than White speakers.



150

E.7 Age
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Figure 22: Left-to-right: GLoVE TF-IDF and GLoVE Mean(Content). Using both methods, we find no correlation

between age and coherence scores.


