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At birth, infants discriminate most of the sounds of the world’s languages, but by
age 1, infants become language-specific listeners. This has generally been taken as
evidence that infants have learned which acoustic dimensions are contrastive, or useful
for distinguishing among the sounds of their language(s), and have begun focusing
primarily on those dimensions when perceiving speech. However, speech is highly
variable, with different sounds overlapping substantially in their acoustics, and after
decades of research, we still do not know what aspects of the speech signal allow infants
to differentiate contrastive from noncontrastive dimensions. Here we show that infants
could learn which acoustic dimensions of their language are contrastive, despite the
high acoustic variability. Our account is based on the cross-linguistic fact that even
sounds that overlap in their acoustics differ in the contexts they occur in. We predict
that this should leave a signal that infants can pick up on and show that acoustic
distributions indeed vary more by context along contrastive dimensions compared
with noncontrastive dimensions. By establishing this difference, we provide a potential
answer to how infants learn about sound contrasts, a question whose answer in natural
learning environments has remained elusive.

phonetic learning | language acquisition | distributional learning

Languages differ in the speech sound inventories they use to reliably convey meaning. For
example, Hindi has a distinction between unaspirated retroflex [t] vs. dental [t”] that is
used to distinguish meanings (e.g., [tal] means “postpone,” while [t”al] means “beat”), but
English does not. Adult speakers are generally tuned to the properties of the language(s)
they speak. For example, while most adult Hindi speakers can hear the difference between
[t] and [t”], most English-speaking adults cannot (1). Because speech sound inventories
differ across languages, listeners must learn about the speech sounds of their language(s)
from the input they hear.

The first signs of this phonetic learning appear within the first year of life. During their
first couple of months, infants can discriminate most sounds of the world’s languages,
showing similar perceptual abilities regardless of their language experience. For example,
both newborn English-learning and Hindi-learning infants can hear the distinction
between retroflex [ta] vs. dental [t”a], a speech contrast that exists in Hindi but not English.
However, over the course of the first year of life, this changes. Infants become language-
specific listeners, starting to more closely resemble adults in their discrimination abilities.
Their ability to discriminate nonnative contrasts (e.g., between retroflex [ta] and dental
[t”a]) for English-learning infants) declines (2–4), whereas their ability to discriminate
contrasts in their own language(s) improves (5).

These perceptual changes have generally been taken as evidence that infants are learning
which acoustic dimensions are contrastive in their language(s): that is, which acoustic
dimensions have multiple categories along them (6). Speech sounds differ in how they
are acoustically produced, and one or more acoustic dimensions will be used to signal
differences between sound contrasts. The idea, then, is that infants become aware of which
acoustic dimensions are used to contrast the meaningful sounds in their language(s) and
begin primarily focusing on those dimensions when perceiving speech.

Decades of research into how infants learn about contrastiveness in their first year of life
has built a wealth of knowledge in this area; however, we still do not know what aspects of
the speech signal allow infants to make these inferences from the acoustically variable
speech they hear in their daily lives. One of the most well-studied current proposals
for how infants learn which dimensions of their language are contrastive is known as
distributional learning (6). It proposes that infants learn the contrastive dimensions of
their language(s) by tracking the frequency distribution of sounds along acoustic cue
dimensions. If an infant observes a bimodal (two-peaked) distribution along a dimension,
then they learn that the dimension is contrastive, whereas if an infant observes a
unimodal (one-peaked) distribution, then they learn that the dimension is not contrastive.

Significance

Languages differ in the speech
sounds they use, and humans
need to learn which sounds their
language uses. This learning
starts early. By age 1, infants have
already tuned into their
language(s): their ability to hear
sound distinctions from their
language(s) improves, while they
often lose the ability to hear other
sound distinctions.
Understanding how this early
learning proceeds is important as
it serves as a foundation for later
development; however, it has
proven difficult to identify a
learning mechanism that works
on the true input infants hear. We
present an account for how
infants learn the speech contrasts
of their language and show that
the necessary signal is present in
naturalistic speech, advancing our
understanding of early language
learning.
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Fig. 1. (A) The frequency distribution of sounds along the duration dimension in Japanese is unimodal, despite vowel length being contrastive. (B) Vowel
frequency distributions along duration, for four Japanese contexts (defined by prosodic position, neighboring sounds, and vowel quality). The relative proportion
of phonemically short and long vowels changes substantially across contexts, which results in differently shaped distributions. The short vs. long categories are
color-coded for the reader’s benefit. Infants (and our analyses) do not have access to this color information when learning, only the overall distributions.

This account has experimental support: distributions of sounds
affect infants’ discrimination in the laboratory (6–10). In addi-
tion, when bimodality is present in the input, computational
models successfully learn correct contrasts (11, 12). However,
a key assumption underlying this proposal is that contrastive
dimensions do indeed exhibit bimodality, and while this is the
case for some contrasts, recent work looking at naturalistic speech
corpora has shown that this is not a universal property of child-
directed speech (13, 14).

For example, in Japanese, vowel length is contrastive (15),
meaning that two different words like /toko/ (“bed”) and /toko:/
(“travel”) can be distinguished solely by how long a vowel is.
However, analyses of a spontaneous corpus of Japanese child-
directed speech reveal that the distribution along the duration
dimension is unimodal despite being contrastive (13) (Fig. 1A;
note that infants do not have access to the individual color-coded
short and long vowel distributions shown in this figure, only
the combined overall distribution). A similar finding has been
reported for Dutch vowel length (14), as well as many other
contrasts (5, 16, 17). That is, although infants are able to use
distributional information for learning when available, it is not
available for all of the contrasts they learn about, so distributional
learning is not sufficient.

Many follow-up theories have been proposed to explain how
infants learn in cases where bimodality is not present. This
has included theories arguing that bimodality might be present
when considering only the most prominent sounds (e.g., stressed
vowels) (18, 19), when normalizing for effects of neighboring
sounds or other factors (20), or when using word-level, visual,
or referential information (14, 21–25). While many of them
have experimental support and work on controlled laboratory
speech, over the past 40 y, it has proven difficult to identify
a learning mechanism that works on the true speech infants
hear. Swingley (14) takes an important step in that direction
by showing that, in Dutch, average vowel durations by word
type are often longer in word types with long vowels than word
types with short vowels (and, thus, that short and long vowels
may be separable). However, we still do not have a measure that
consistently separates vowels with a contrast from vowels without
a contrast across corpora, languages, and vowel qualities. This
problem is so extreme that recent work has suggested that infants
might not actually be learning how many phonetic categories there
are along a dimension at all, because this signal is not present in
their input in a way that they have access to (26).

In this paper, we show that the necessary signal to learn which
acoustic dimensions are contrastive may be present in naturalistic
input and accessible to infants. Our proposal takes advantage of
the contextual information of a sound, which infants are sensitive
to (22–24, 27–31). In this work, we take the context of a sound to
include factors like its neighboring sounds, its prosodic position

in a word/utterance (i.e., if it immediately borders a word or
utterance boundary), and its word frame; however, we think
of context more broadly as any information that listeners track
about where a sound occurs or who spoke it. When an acoustic
dimension is contrastive, there are multiple categories along it,
and the relative proportion of those categories may differ across
contexts (e.g., if two categories are present, one context may be
50% category 1 and 50% category 2, whereas another context
may be 90% category 1 and only 10% category 2). We show
that such differences in category frequency—which are extremely
common across languages (32–34)—can help infants distinguish
contrastive from noncontrastive dimensions.

We test our proposal on two test cases, Japanese and Dutch,
which have been most problematic for both distributional
learning and additional previous theories, and show that our
proposal explains how infants could nonetheless learn the contrast
from information available to them within their first year of
life. Complemented by previous findings that 1) infants are
sensitive to distribution shapes and contextual information and
2) changes in the relative proportion of sounds across contexts
are a cross-linguistically widespread property of sound categories,
these results are promising and suggest that infants may be able to
learn about contrastiveness from naturalistic speech input, thus
pointing toward a possible answer to a long-standing question in
the field.

Distributional Learning across Contexts

The inspiration for our proposal comes from a finding showing
that the context a sound occurs in (neighboring sounds, prosodic
position, speaker, etc.) is predictive of its identity: just knowing
what context a Japanese vowel appears in can predict its length
with around 95% accuracy (35). This means that short and long
vowels appear in different proportions in different contexts. Most
contexts have almost all short vowels (e.g., context 1 in Fig.
1B), whereas some contexts have almost all long vowels (e.g.,
context 2 in Fig. 1B), and some are in between (e.g., contexts
3 and 4 in Fig. 1B). Fig. 1B reveals that these changes in the
relative proportion of short and long vowels can change the overall
shape of the frequency distribution in the context. All of the
distributions in Fig. 1B are unimodal, despite the fact that there
are two categories. Thus, they would not be conducive to the
distributional learning theory proposed by ref. 6. However, this
is only one aspect of a distribution’s shape, and across contexts,
the distributions differ in how wide or peaky they are, where they
peak, and so forth. This arises because of two facts: 1) when a
dimension is contrastive, the overall frequency distribution in each
context is the sum of the short vowel distribution and the long
vowel distribution, and 2) short and long vowels have different
distributions, as can be seen in Fig. 1. Taken together, this means
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that in a language like Japanese, where there is a contrast, we
would expect different relative proportions of short vowels and
long vowels across different contexts, and since short vowels and
long vowels have different acoustic distributions, we would expect
the overall distribution to change across different contexts. On
the other hand, in a language like French (where there is no
length contrast), shape changes cannot arise from different relative
proportions of short and long vowels because there is no short vs.
long vowel distinction.

In light of this, we propose that infants might learn that a di-
mension is contrastive by tracking the acoustic distribution along
that dimension across different contexts. They could compare the
shapes of the distributions across those contexts and infer that
a dimension is contrastive if the shape varies substantially across
contexts but infer that it is not contrastive if the shape is largely the
same across contexts. We operationalize a sound’s context as 1) its
(immediately) neighboring sounds, its prosodic position (whether
it falls at a word or utterance boundary), and its quality (learned
before length) or 2) its word frame, due to evidence that infants
are sensitive to this information in their input (22–24, 27–31,
36). However, we are not tied to these particular factors. Any
contextual factors that infants track, and that change the relative
proportion of sound category membership, could work.

It is important to note that the learning outcome of this
proposal is the same as in ref. 6 but differs from the learning
outcomes of some phonetic learning theories that have arisen since
then (21). In particular, the learning outcome here is whether
or not an acoustic dimension is contrastive—i.e., whether it is
used to distinguish multiple categories. The learning outcome
of some other theories included this knowledge implicitly but
often also included knowledge about what those categories were.
Certainly listeners eventually learn about the categories, and a
full learning account would need to eventually explain how that
happens. However, the discrimination behavior infants exhibit in
ref. 2 does not require them to have learned categories (2, 26, 37),
so we follow the original literature and focus on how infants learn
which dimensions are contrastive in their language.

In what follows, we ask whether the necessary signal for this
learning account is present in naturalistic speech, that is, whether
there are larger distribution shape changes across contrastive di-
mensions than noncontrastive dimensions. We focus on three test
cases, which each involve some data in which vowel length is

contrastive, and some data in which vowel length is not con-
trastive. We look at vowel length for two reasons. First, it has
a largely agreed upon primary cue (duration) that can be easily
extracted from any annotated corpus. Second, it is possibly the
best known case of extreme overlapping categories that cannot be
explained by previous theories like distributional learning (13).
We focus on the test cases that have been problematic for past
phonetic learning theories but argue in Discussion that this same
approach to phonetic learning is likely to be effective across a wide
range of languages and contrasts.

Results

Our results confirm that in spontaneous speech, there are more
extreme distribution shape changes across contexts when a dimen-
sion is contrastive than when it is not.

For all of the corpora we study, we extract the acoustic distri-
butions across a number of contexts and compare them pairwise,
using Earthmover’s distance (38), a commonly used metric of
distribution shape difference (see SI Appendix for discussion of
results using an alternative metric, KL divergence, instead). We
operationalize “context” in two different ways, both of which rely
on information that infants at the relevant age are sensitive to 1) a
combination of prosodic position, neighboring sounds, and vowel
quality (P + NS + VQ) and 2) word frames.

We first compare a spontaneous speech corpus of Japanese
(which has a vowel length contrast) against a spontaneous speech
corpus of French (which does not). We then test two spontaneous
Dutch corpora. Dutch has the property that a subset of its
vowels has a length contrast, whereas a different subset does not.
Comparing the subset that has a contrast against the subset that
does not allows us to control for any effects that may arise due to
differences in how the French and Japanese corpora were collected
and annotated. Two of our tests examine adult-directed speech
(ADS) corpora because they allow us to test this proposal on large-
scale, spontaneous speech corpora which do not exist for infant-
directed speech (IDS), but we include results from a small corpus
of infant-directed Dutch as well.

Japanese vs. French ADS. We first compared Japanese and
French, defining context as a combination of prosodic position,
neighboring sounds, and vowel quality (Fig. 2). Each data point

Fig. 2. Distribution of Earthmover’s distances by test case. Each data point represents the pairwise Earthmover’s distance (EM) between distributions from
two different contexts (e.g., we show the comparison for Fig. 1B’s context 1 vs. context 2, which has a high Earthmover’s distance, and Fig. 1B’s context 3 vs.
context 4, which has a small Earthmover’s distance). Across all test cases, the tail of the contrastive boxplot (Left) is longer than that of the noncontrastive
boxplot (Right), suggesting that there are more extreme distribution shape changes across contexts when the acoustic dimension is contrastive. P + NS + VQ =
prosodic position + neighboring sounds + vowel quality.
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Table 1. Information about the Japanese contexts that
drive the tail in the case of the P + NS + VQ analysis,
including what percentage of vowels in that context are
long, how many times that context occurred (count),
and its frequency rank out of all contexts that occurred

Percent Frequency
Context long Count rank
Phrase-initial, word-final /e/ 64.7 1,357 18
Phrase-initial, phrase-final /a/ 56.7 255 95
Phrase-initial, phrase-final /e/ 87.9 244 100

contributing to the boxplot represents the Earthmover’s distance
between a pair of contextual acoustic distributions. For example,
the comparison between context 1 and context 2 in Fig. 1B has
a high Earthmover’s distance, whereas the distance for contexts 3
and 4 is much smaller because they are very similar.

The boxplot corresponding to Japanese (where vowel length
is contrastive) has a much larger tail, extending upward toward
large Earthmover’s distances, than the boxplot corresponding to
French (where vowel length is not contrastive). This means that
as predicted, there are many more pairs of contexts that have
substantially different shapes (like context 1 vs. context 2 in
Fig. 1B) when there is a contrast than when there is not. The
maximum distance, the mean distance, and the distance variance
are all larger for Japanese than French (maximum = 0.43 vs. 0.16;
mean = 0.05 vs. 0.02; variance = 0.003 vs. 0.0004). Analyzing
the contents of the tail in Japanese reveals that the tail is driven
by contexts that have a much higher percentage of long vowels
than observed overall and that occur frequently in the input (see
Table 1 for frequency counts and ranks of the contexts that drive
the signal).

These same patterns hold when we continue looking at French
vs. Japanese, but instead use word frames as contexts. As before,
there are more contexts with more extreme distribution shape
changes in Japanese than French (i.e., along contrastive than non-
contrastive dimensions), as seen by the longer tail in the second
pair of boxplots in Fig. 2. As before, the maximum distance, the
mean distance, and the distance variance are all larger for Japanese
than French (maximum = 0.27 vs. 0.12; mean = 0.04 vs. 0.02;
variance = 0.001 vs. 0.0002).

Dutch ADS and IDS. To test our proposal using a within-language
comparison, we compare the subset of Dutch vowels that do
contrast in length and the subset of Dutch vowels that do not.
We find that the predicted pattern still holds, and it holds for
both ways of defining context and both the ADS and IDS corpora
(Fig. 2). This confirms that the results are not merely an artifact of
using different corpora, as in the French vs. Japanese case, but seem
to reflect something inherent to the existence or nonexistence of
categories along an acoustic dimension. It is worth noting that
Dutch-learning infants would not be able to perform this exact
analysis to learn whether there is a length contrast, because they
would not yet know enough to separate the vowels into contrastive
and noncontrastive subsets. We return to the issue of what a
learning account might look like in Discussion. Meanwhile, we
conclude from this analysis that the signal our account predicts
exists in Dutch: contrastive dimensions differ from noncontrastive
dimensions.

Despite the qualitative similarity in results across all test cases,
the scale of the difference in tail length varies. For example, in
the French vs. Japanese P + NS + VQ case, the maximum
Earthmover’s distance in the contrastive Japanese case is 0.43,

whereas for the other ADS cases, the maximum is less than 0.3.
In the Dutch IDS corpus, which only has 284 vowel tokens,
the maximum is only around 0.1. One possibility is that these
differences arise because of the large differences in corpus size. The
Japanese vs. French corpora considered 132,037 tokens, and the
Dutch ADS corpus considered 21,187 tokens, but the Dutch IDS
corpus only considered 284 tokens.

Corpus Size Analyses. To test how corpus size impacts results,
we used bootstrap samples to run each analysis 50 times for 10
different corpus sizes ranging from the size of smallest corpus
(284) to the size of the largest corpus (132,037). This also allowed
us to test how much the size of the tail varied and whether
differences observed between contrastive vs. noncontrastive cases
were meaningful. Fig. 3 shows these results when calculating the
maximum Earthmover’s distance across all 50 runs; analogous
plots for mean are provided in SI Appendix. First, this analysis
reveals that the differences observed are meaningful: across many
runs, at large enough corpus sizes, the contrastive line is higher
than the noncontrastive line. That being said, in the Japanese
vs. French case, the difference does not emerge until around
2,000 vowel tokens have been observed, so input size does matter.
Second, this analysis reveals that differences in scale may be
partially, but not entirely, due to corpus size. When subsetted to
the size of the Dutch ADS corpus, the Japanese vs. French word
frame maximum matches the remaining ADS results. However,
the results are less clear for Dutch IDS: subsetting the Dutch ADS
corpus to the size of the Dutch IDS corpus yields results more in
line with each other for the P + NS + VQ analysis but less so for
the word frames analysis.

From a learning perspective, this means that an ideal learner
would need to observe around 2,000 vowel tokens and track the
acoustic distribution within the 20 most frequent contexts in
order to observe the difference (although we discuss potential ways
to reduce the memory demands of the proposal next as well as in
Discussion).

Relaxing Our Assumptions About Infants’ Knowledge. Our
analyses so far have been conducted assuming that 1) infants can
track acoustic distributions across combinations of three contexts
(prosodic position, neighboring sounds, and vowel quality);
2) infants can perfectly identify neighboring consonants; and
3) infants can perfectly segment words from speech. Although
some of these assumptions have yet to be tested (e.g., we
do not know whether infants can track distributions along
multiple contextual dimensions), we know that others are likely
overestimating infants’ prior knowledge when learning about
contrastive dimensions. Here we show that the same qualitative
results still emerge even when we weaken these three assumptions.

The first assumption we revisit is whether infants can track dis-
tributions across combinations of contexts (i.e., prosodic position,
neighboring sound, and vowel quality). We test what happens
when we study each of these three factors individually. Fig. 4
shows that especially for prosodic position, but also for the other
factors, the same patterns, for the most part, emerge. While it
is still quite conceivable that infants track distributions across
combinations of contexts, these results suggest that this need not
be the case in order for our account to be successful. It suffices to
track distributions across individual contexts (e.g., word frames or
prosodic position). From a learning perspective, this means that
infants would only need to be tracking the acoustic distribution
across ∼4 to 10 contexts (rather than ∼20 as observed before),
and these contexts include extremely prominent contexts (e.g.,
utterance-final and utterance-initial tokens).
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Fig. 3. Bootstrapped analyses reveal that observed differences between contrastive (top blue line) vs. noncontrastive (bottom orange line) dimensions are
meaningful but that input size does matter. “C” refers to the number of contexts included in the analysis. The maximum input size for which data are shown
depends on the corpus size: 284 for Dutch IDS, 21,187 for Dutch ADS, and 132,037 for Japanese vs. French.

The next two assumptions we revisit are whether infants can
perfectly encode the identity of neighboring sounds and whether
they have a solid enough grasp on word segmentation to have
access to the prosodic position information we use. On one
hand, prosodic boundaries are one of the first signals that infants
are sensitive to (28, 29); however, on the other hand, there is
concurrent evidence that infants make missegmentation errors
(39–41). To address these two assumptions, we test what happens
when we rerun the P + NS + VQ simulations, with neighboring
sounds defined by their broad class (i.e., stop, fricative, vowel,
approximant, etc.) rather than their particular identity (e.g., /k/,
/g/, and /b/) and with noise added to the prosodic information
(we simulate a 20% error rate here, such that 20% of the time,
the infant misrepresents the prosodic position of the vowel, but
the results generalize across error rates). Fig. 5 shows that these
differences do not qualitatively change the results, suggesting that
even with a more rudimentary grasp on contextual factors, infants
could still use this method to learn the sound contrasts.

Overall, we show that the necessary linguistic knowledge and
capabilities can be considerably reduced and yet the correct find-
ing still emerges. This suggests that this finding is a robust one
that immature learners could learn from even in noisy learning
environments.

Analyses with Long Vowels Removed. Finally, to test whether
these results arose because of the contrast, we removed all vowels
labeled as long from the corpora and reran the same analyses.
We predicted that removing the long vowels would cause the tail

for the contrastive dimension to disappear, such that the results for
the contrastive dimension with long vowels removed (i.e., with
the contrast artificially removed) would resemble those of the
noncontrastive dimension. As can be seen in Fig. 6, in Japanese
and in Dutch IDS (the two hand-annotated corpora we use), the
tail disappears or is reduced once the long vowels are removed,
suggesting that it is at least partially the presence of the long vowels
that causes these large changes in distribution shape. However,
this is not case in Dutch ADS: the contrastive dimension still
has a longer tail even when long vowels are removed. While this
is not predicted by our account, there are a number of reasons
why we may observe this result here. One possibility is that the
annotations are imperfect. The remaining datasets studied here
include hand-corrected segmental annotations, while the Dutch
ADS data included force-aligned annotations which were not
validated for their duration. Another possibility is that it has to do
with the fact that these data were phonetically annotated, rather
than phonemically annotated. That is, some phonemically long
vowels were marked as being short. In fact, ref. 42 reports that as
many as 20% of word tokens that had long vowels underwent a
shortening process. Especially combined with the fact that these
data were automatically annotated, this could mean that we are
unable to actually remove all long vowels and that some long
vowels remain which are driving the differences observed. Finally,
another possibility is that the presence of long vowels in a context
changes the distribution of short vowels. For example, if a context
is 50% short vowels and 50% long vowels, then the short vowels
may be pronounced with shorter durations than in a context
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A

B

C

Fig. 4. Results are similar when we relax our assumptions about infants’
knowledge. Here, instead of studying a combination of factors, we study (A)
prosodic position (P), (B) neighboring sounds (NS), and (C) vowel quality (VQ)
individually (left boxplot in each panel shows contrastive dimension; right
boxplot in each panel shows noncontrastive dimension). While less clear for
vowel quality, we see the same pattern of results in the prosodic position and
neighboring sounds only cases.

with 90% short vowels and only 10% long vowels (i.e., to better
differentiate the vowel types). If this is the case, then even if we
remove the long vowels, we should expect to see differences in the
short vowel distributions across contexts. However, this finding is
nonetheless different from what our account predicts, and more
work should be done with hand-annotated corpora to see whether
this finding remains and, if so, what is driving it.

Nonetheless, across the board, we do observe that the con-
trastive dimensions have a longer tail than the noncontrastive
case, suggesting that contrastive dimensions exhibit more ex-
treme distribution shape changes across contexts (even though

all distributions are unimodal) than noncontrastive dimensions.
These results show that contrastive dimensions look different
from noncontrastive dimensions and that infants would learn the
correct generalization about their language by using this signal.
As such, this is a piece of signal that has been shown to suc-
cessfully differentiate contrastive and noncontrastive dimensions
using spontaneous speech.

Discussion

In this paper, we proposed an account for how infants could learn
which acoustic dimensions of their language are contrastive. The
idea is that infants track the frequency distributions of sounds in
different contexts and that they learn that an acoustic dimension
is contrastive if the distribution shape along that dimension varies
substantially across different contexts. For this account to work,
it needs to be the case that the distribution shape varies more
across contexts when a dimension is contrastive than when it
is not. We tested this prediction in three test cases, with two
different definitions of context. Across the board, our results
show that the distribution shape along an acoustic dimension
changes more across different contexts when that dimension is
contrastive than when it is noncontrastive. This is a signal that
differentiates contrastive and noncontrastive dimensions, and it
is the kind of signal that listeners are likely to be sensitive to.
As such, this is a phonetic learning account that has been shown
to work on spontaneous data and suggests that infants could be
learning which acoustic dimensions are contrastive after all. In the
remainder of the paper, we discuss the promise and open questions
of this proposal, including its generalizability, evidence on whether
infants have the necessary sensitivities, and how infants could use
this signal to learn.

Generalizability. We considered the test cases of Japanese and
Dutch vowel length because they are famous problem cases for
many of the phonetic learning theories that already exist (13, 43).
However, they are unique contrasts in a number of ways. They
have low functional load in that they are not frequently used to
distinguish different meanings and they have particularly over-
lapping acoustic distributions. In addition, the Japanese contrast
is primarily signaled by one acoustic cue (i.e., duration), while
most contrasts are signaled by more (44, 45), and as around 90%
of Japanese vowels are short, it is less balanced than many other
contrasts. Future work will need to test the generalizability of this

Fig. 5. Results are similar when we relax our assumptions about infants’
knowledge. Here we define neighboring sounds by their broad class (stop,
fricative, etc.) and add noise to the prosodic position with a noise rate of
20% (left boxplot shows contrastive dimension; right boxplot shows noncon-
trastive dimension).
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Fig. 6. Results from artificially removing long vowels. Within each case, the
left boxplot corresponds to the contrastive dimension, the middle boxplot
corresponds to the noncontrastive dimension, and the right boxplot corre-
sponds to the contrastive dimension with long vowels removed. We observe
that the tail length is reduced for the Japanese/French and Dutch IDS analyses,
however, against predictions, not for the Dutch ADS analysis.

proposal. Nonetheless, we think it is likely that this signal will gen-
eralize to other contrasts because the signal we illustrate in Fig. 1B
does not stem from these idiosyncrasies. Rather it arises because
of a handful of contexts that have particularly different frequency
distributions, and we think these exist because of properties of
language that phonologists have argued are universal (32).

All languages are thought to have phonotactic or cooccurrence
constraints. For example, for the English contrast [n]–[N] (e.g.,
“sin” vs. “sing”), [n] can occur at the beginning or end of a syllable,
while [N] can only occur at the end of syllables. This means
that the relative proportion of [n]s and [N]s will change across
those contexts and could show patterns like in Fig. 1. Similarly,
sometimes sounds will be pronounced differently based on their
context. For example, if we consider the contrast between [n] and
[m], the [n] sound never occurs before the sounds [p,b] but is
instead pronounced as [m] in those contexts (as in “impossible”).
These types of phonological alternations also create differences in
which sounds occur in which contexts and are cross-linguistically
widespread (32–34). Finally, there are systematic regularities based
on the words in the language. For example, for the [p]–[b] contrast
in English, [b] is more likely in the word frames aby and ar
(“baby” is a word, but “paby” is not, and “bar” is more frequent
than “par”), whereas [p] is more likely in the word frames lay
and in (“play” is a word, but “blay” is not, and “pin” is more
frequent than “bin”). Taken together, phonotactics, phonological
alternations, and word regularities all create systematic regularities
in the contexts that sounds occur in, such that different sounds
occur in different contexts and different contexts are made up of
different ratios of sounds. This is currently thought to be true of
all contrasts—even those that are equally balanced, have higher
functional load, or are multidimensional—and will be the case in
ADS as well as IDS. Indeed, ref. 35 showed the context is similarly
predictive of which category a sound belongs to in both ADS and
IDS.

Nonetheless, while our results are promising, they ultimately
come from one acoustic dimension, one contrast type, and only
three languages. Furthermore, there are additional complexities
that we have not considered here, like how extralinguistic factors
(e.g., speaking style/register, emotional content of speech, and
speech rate) could affect the signal and how this proposal interfaces
with other learning strategies that infants have been shown to use
(e.g., using visual and referential information).

To test generalizability, future work should replicate these
findings on other datasets as they become available (we have
made our code publicly available to facilitate this effort) (46).
Particular focus should be placed on replicating these results on

a large ecological corpus of IDS, replicating these results on other
contrasts whose acquisition is difficult to explain [e.g., Filipino
nasals (47)], and studying Dutch to understand why removing
long vowels does not always change the result, as well as replicating
these results in languages where the identity of a particular sound
cannot be predicted as well from its context, due to having fewer
phonotactic and other systematic restrictions (48). It will also
be important to test this proposal on contrasts that are signaled
by multiple acoustic dimensions (as the contrasts we study here
are unique in primarily being signaled by one, duration). In
order for this account to work in those cases, we would need
to observe the signal we report here along at least one of the
acoustic dimensions that signal the contrast (e.g., along VOT or
F0 for stop contrasts). Alternatively, rather than operating over
individual acoustic dimensions, infants could search for this signal
along composite acoustic dimensions that are discovered from the
input by combining dimensions that are highly correlated in the
input (e.g., as discussed in refs. 37, 49). Finally, we note that
Earthmover’s distance can be calculated over multidimensional
distributions, so it should be possible to scale this approach up to
multidimensional contexts if so desired; however, for that to work,
the infant would have to first identify the relevant combinations
of acoustic dimensions they should focus on. Overall, it will be
important to replicate these findings across highly variable corpora
that adequately represent the full range of speech types that infants
could encounter.

Finally, it will also be important to test that these results do
not overgeneralize and wrongly label noncontrastive dimensions
as contrastive. Here it will be particularly important to test
behavior on allophonic variation, where a particular sound is
realized differently depending on the context it occurs in. While
this pattern is similar to that of different phonemes occurring in
different contexts, our analyses provide preliminary evidence that
allophonic variation is not labeled as contrastive. In particular, in
French, vowel length varies allophonically (vowels are lengthened
depending on the following consonant) (50), yet our analyses
reliably treated French (allophonic variation in vowel length) dif-
ferently from Japanese (phonemic variation in vowel length). This
suggests that this method may correctly differentiate contrastive
and allophonic variation, although it will be important to study
this further and understand how it does so (if it does). We offer two
speculative reasons why allophonic variation may not be detected
to the same degree as phonemic variation, although they will need
to be tested. First, this proposal relies on contrasting sounds hav-
ing sufficiently different acoustic distributions (so that changing
the relative proportion of the sounds changes the shape of the
distribution). It is possible that allophonic variation changes how
a sound is produced to a lesser degree than phonemic variation,
although this may be difficult to assess. A second possibility is
that allophony often, although not always, affects all of the sounds
produced in a particular context (e.g., the duration of all French
vowels is affected by neighboring consonants). This may lead to a
shift in distribution between contexts, without a change in shape,
which may lead to smaller distribution shape changes as measured
by Earthmover’s distance. Certainly, more research studying how
this proposal handles allophony will be crucial.

Could Infants Do This? This proposal places higher computational
and memory demands on infant learners than many past theories
have (e.g., distributional learning). Infants would need to be
able to track distribution shapes across many contexts and then
compare their shapes pairwise.
Could infants track distributions across different contexts? Al-
though this has not been tested, we know that listeners track
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the shape of frequency distributions overall and use this for
phonetic learning and processing. For example, infants make dif-
ferent phonetic inferences depending on whether the distribution
they hear is bimodally or unimodally shaped (6). Another study
showed that adult listeners are sensitive to the variance of the
sound distributions they are exposed to, another property of a
distribution’s shape (51). In that experiment, adults categorized
sounds differently depending on whether they heard a distribution
with high or low variance, although this has not been tested in
infants.

In addition, we know that listeners are sensitive to the context
of a sound and use it for phonetic learning and processing. Both
toddlers 12 mo and older and adults have been argued to track
acoustic distributions across speakers (which can be thought of
as a context), can adapt to speakers who have different accents
(i.e., different distributions of sounds) (52–58), and mirror the
speech of their interlocutors. In addition, infants are sensitive
to phonotactics (59), as well as phonological alternations—the
fact that sounds tend to be pronounced differently in different
contexts (60, 61). Additionally, multiple studies have shown that
infants use the word frame of a sound in phonetic learning
(22, 24). That is, infants seem to assign acoustically similar sounds
to different categories if they occur in different word frames,
suggesting that infants can track the context that a sound occurs
in and use it for phonetic learning. Adult speech perception
is affected by contextual factors, like neighboring sounds. For
example, ref. 62 showed that Japanese perception of whether the
final vowel in CoC’V was phonemically short or long depended
on the identity of both C and C’. Furthermore, ref. 63 showed
that adults continually track how informative particular acoustic
cues are and will selectively reweight these cues in some contexts
but not others (e.g., when categorizing /b–p/ in beer–pier but
not for /d–t/ in deer–tier and vice versa). Indeed, listeners may
even track information across contexts defined by multiple factors.
For example, in English, to learn whether a stop consonant
will be aspirated or not, the speaker must track whether the
sound is voiceless or voiced (akin to vowel quality), whether it
occurs at the start of a stressed syllable or not (akin to prosodic
position), and what the neighboring sounds are and then notice
the change in pronunciation/distribution across those different
contexts.

Taken together, while these results do not provide direct evi-
dence that infants track distribution shapes across contexts, they
suggest that listeners can track complex statistical regularities
across complex contexts and use them in real-time phonetic
learning and processing.
Could infants compare distribution shapes? Finally, the last skill
necessary for the proposal is for infants to be able to compare
distributions. While this has again not been directly tested, one
possible clue is that listeners seem to reweight acoustic cues
depending on how variable/informative they are, with cues that
have narrower distributions being more informative than cues
with wider distributions (51, 64, 65). Another possible clue is that
toddlers and adults are able to identify when they need to adapt
their representations to speech they hear. Being able to identify an
accent implies that listeners can identify when the speech they are
hearing differs from the speech they usually hear, a computation
that is likely to involve tracking at least some properties of the
distributions (66).

Overall, given infants’ demonstrated sensitivity to distribution
shape and to changes across context, there is good reason to
believe that infants could be sensitive to the type of distributional
information that our account assumes, but future work should test
whether infants/listeners can track distributions across different

contexts (defined by one or more contextual factors) and com-
pare distributions’ shapes. In addition to testing whether infants
can, in theory, perform the computations this account requires,
future work should also test whether infants actually use them
to learn about contrastiveness in the way we propose here. One
approach would be to test this experimentally, by exposing infants
to acoustic distributions that differ or remain the same across
contexts and seeing if this affects their learning/behavior. Another
approach would be to use cross-linguistic corpora to identify
contrasts that should be easier/harder to learn according to our
proposal and compare that against age of acquisition and speech
perception/production data. For example, controlling for degree
of acoustic overlap, this theory would predict that contrasts that
have stronger phonotactic restrictions or that are more predictable
(i.e., it is easier to predict which member of the contrast occurred
based on the context it occurred in) should be easier to learn
through this method. These approaches will allow us to overcome
the next big hurdle for this account, which is determining whether
infants use this signal to learn.

Reducing the Computational Complexity of the Proposal. It is
also possible that the memory and computational restrictions
of the proposal could be reduced. On one hand, we saw that
considering individual contexts (e.g., just the most frequent word
frames or just prosodic position) was still effective, as was in-
troducing some parsing errors and considering broader segment
classes rather than individual neighboring sounds. On the other
hand, online approximations or metrics that do not require the
whole distribution to be tracked in order to get a measure of
distribution shape distance could also reduce the computational
and memory complexity of the proposal. For example, rather than
exactly representing the distribution, this proposal could operate
over a compressed representation of the distribution that keeps
track of how many points fall within larger bins/bands (similar to
reducing the number of bins in a histogram). It is likely that we
would still observe the critical pattern even with this less detailed
representation of distribution shape, and as this only requires
keeping track of one number per bin (its count), it could reduce
the size of the representation of a distribution to just 5 to 10
numbers. Even considering all 200 of the most frequent contexts,
this could involve storing as few as 1,000 numbers. In addition,
there may be a way to zero in on the contexts that yield the
necessary signal without doing all of the pairwise comparisons
represented in the boxplots. It is possible that the key contexts that
drive the signal are overrepresented in the outliers of the overall
distribution (i.e., particularly short or particularly long vowels
could be more likely to occur in a context that drives the tail).
If this were true, infants could arrive at the same signal we observe
here, by focusing in on the contexts of outlier sounds, rather
than tracking the distribution across all contexts. Finally, another
possibility is that infants could compare contextual distributions
using higher-order measures of distribution shape (e.g., variance)
rather than tracking the entire distribution. The fact that the
distribution shape changes across contexts could also mean that
the variance of the distributions changes across contexts. If so,
infants could pick up on this difference without encoding the
entire distribution across contexts.

Moving from Signal to Learning Account. The data we report
plot Japanese and French side by side, but most Japanese infants
do not get French input to compare against. Assuming that this
pattern generalizes to other contrasts and that infants have the
necessary sensitivities to detect this signal, how could infants
actually use it to learn?
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One possibility is that infants use a built-in threshold to
determine whether a dimension is contrastive: if the metric (this
could be something like the average, range, variance, or maximum
Earthmover’s distance) exceeds the threshold, they learn the di-
mension is contrastive; otherwise, they learn that it is not. Another
possibility is that infants compare against other acoustic dimen-
sions of their own language (instead of against other languages, as
we did). If these metrics turn out to be larger for all contrastive
dimensions than all noncontrastive dimensions, infants could
easily separate contrastive vs. noncontrastive dimensions.

One complication for this possibility, however, is that the
metrics we report are sensitive to the scale of a dimension, making
it difficult to compare across dimensions with different scales
(e.g., formants vs. duration). To overcome this problem, we tried
z-scoring the dimensions but found that the key effect partially
disappeared: the effect was retained for French vs. Japanese and
when considering only the most frequent contexts, but when
more contexts were considered, the pattern reversed in Dutch
ADS. This happened because z-scoring is sensitive to variance,
and as there was more variability along the contrastive than
noncontrastive dimensions, z-scoring led to artificially lowered
Earthmovers’ distances along the contrastive (more variable) di-
mension. Nonetheless, a method that standardizes the scales with
less sensitivity to the overall variance could allow for comparison
across dimensions.

Finally, given the overall distribution along an acoustic
dimension, infants could have a probabilistic model of how
different they should expect distributions to be across contexts,
depending on whether the overall distribution is made up of one
vs. two categories. With this, they could compare how likely a
one-category vs. two-category solution is to have generated the
observed Earthmover’s distances (controlling for phonological
processes, it would be unlikely for one category to produce
extremely different distribution shapes as in Fig. 1B).

One issue that should be considered in future work is whether
learners consider aggregate distributions across all of the vowel
qualities when comparing distribution shapes across contexts. In
our analyses of Japanese and French, we have assumed that they
do, and in fact, vowel quality is one of the contextual factors
we analyze. However, this creates a potential problem for Dutch
because only a subset of Dutch vowels contrast in length. If Dutch
infants were to initially rely on the aggregated distribution shape
comparison approach we put forth for Japanese, this might lead
them to conclude that vowel duration is a contrastive dimension
that they should tune into (as the context pairs that showed
high Earthmover’s distance would still be in this analysis), but
they would not realize that only some of the vowels contrast.
It is possible that they could later learn which specific vowel
qualities contrast in length. It is also possible that Dutch infants
use a different strategy entirely for discovering the vowel length
contrast: those Dutch vowels that contrast in length also contrast
in vowel quality (e.g., [A] vs. [a:] contrast in Dutch, but [a] vs.
[a:] contrast in Japanese). Having already separated [A] from [a:]
using their vowel qualities, Dutch infants could simply notice that
these vowels differ systematically in their durations, without doing
any distribution shape comparisons of the type we propose here.
Ultimately, we remain agnostic as to how exactly infants learn.
Given the complexity of the task infants are faced with as well
as past experimental findings showing infants use many types of
information in phonetic learning, it likely involves a combination
of strategies (e.g., using word-level, visual, referential, and other
distributional information in addition to the types of analyses we
report here). Having established that a signal exists in naturalistic
data, we hope future research will investigate how this signal

might best be used for learning and how it integrates with other
promising accounts.

Conclusion

Infants need to learn which acoustic dimensions of their language
are contrastive in order to learn the sound system of their language.
However, we still do not know what aspects of naturalistic input
provide the necessary signal for them to do so. In this paper, we
propose a potential account for how infants learn this and show
that there is a signal about whether a dimension is contrastive in
noisy, spontaneously produced input. This account is particularly
promising for two reasons. First, the signal that we pick up on is
a direct consequence of multiple categories exhibiting properties
that hold true across most languages, so we think it is likely
that this result will generalize to other contrasts. In addition, the
signal is something that even infants may be sensitive to. Past
work has shown that infants track the shapes of overall frequency
distributions and know about how sounds are likely to sound
in different contexts (6, 60, 61). Adults have been shown to
track distributions across situations (i.e., across different talkers)
(52). In conclusion, we show that even when two sounds overlap
acoustically, the fact that they occur in different contexts leaves
signal to their contrastiveness. These results provide initial support
for a phonetic learning account that works on highly acoustically
variable spontaneous speech.

Materials and Methods

Methods. For each test case, one of the datasets (contrastive or noncontrastive)
was larger than the other. To correct for this, we only considered the first N tokens
of the larger dataset, where N was the size of the smaller dataset. We extracted
the duration, the primary acoustic cue to length, of each vowel token in seconds,
rounding to the same degree of precision. In addition, we extracted all contextual
information that was available across all of the corpora we study and that infants
of the relevant age are sensitive to the following.

• Vowel quality: For Japanese, this was /a/, /e/, /i/, /o/, or /u/. For French, this was
/a/, /e/, /i/, /o/, /u/, /y/, /ø/, /ã/, /õ/, or /ø̃/. For Dutch, this was /A-a/, /O-o/, /œ-ø/,
/E-e/, /I/, /u/, /y/, or /i/. The first four listed pairs are differentiated by quality
and length, but we do not incorporate these vowel quality differences into this
paper. Vowel quality is thought to be learned before vowel length (27).

• Prosodic position: We represented prosodic position (a vowel’s position rela-
tive to prosodic boundaries) with four indicator values: 1) whether the vowel
was word-initial or not, 2) whether the vowel was word-final or not, 3) whether
the vowel was phrase-initial or not, and 4) whether the vowel was phrase-final
or not. Infants have been shown to be sensitive to prosodic boundaries quite
early (28, 29).

• Neighboring sounds: We extracted the identity of the immediately previous
sound and the immediately following sound, as labeled by the phonetic
transcription, ignoring length information. Again, vowel length contrast is
thought to be learned later than other types of contrasts (27).

• Word frame: We extracted the word frame that the vowel occurred in, excluding
all length information. For example, one word frame could have been [b i ru],
which would include both [bi:ru] and [biru]. We chose to include word frames
as infants know and can segment words early (30, 31, 36, 67) and use word
frames in phonetic learning (22–24).

We looked at two main ways of defining context, although we do not have any
commitments about which contexts infants would compute over. In the first way
of defining context, we used a combination of vowel quality, prosodic position,
and neighboring sounds (e.g., /o/ vowels that follow a /t/ and precede a /k/
that are word- and phrase-internal), although we also consider each of these
three contextual factors individually. This combined set of factors corresponds
to the subset of factors considered in ref. 35 that were available for the corpora
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we study and that infants are most sensitive to. In the second way of defining
context, we used word frames, as has been done in refs. 14 and 21, among
others.

Because most contexts occur very infrequently, we looked at a subset of all
possible contexts. We subsetted the contexts in two qualitatively different ways:
either by taking the top X most frequent contexts or by taking all contexts that had
at least N tokens, varying X and N. Results were qualitatively similar in all cases, so
we present results from including the 200 most frequent contexts for the French
vs. Japanese and Dutch ADS analyses and only the 5 most frequent contexts for
the Dutch IDS analysis due to its much smaller size. Once we had the contexts, we
extracted the vowel duration frequency distributions in each context (examples
shown in Fig. 1).

We compared the shape of each pair of contextual frequency distributions,
using a metric known as Earthmover’s distance or Wasserstein distance (37, 68),
which is commonly used to measure the difference in shape between two distri-
butions (see SI Appendix for methods and results using KL divergence instead).
Earthmover’s distance is often talked about in terms of two piles of dirt, which
represent the two distributions being compared. In this context, Earthmover’s
distance can be thought of as the minimum cost of turning one earth pile into
the other, where cost corresponds to a combination of the amount of earth being
moved as well as the distance it has to be moved. In other words, the distance is
the minimum average distance a piece of dirt will have to be moved in order to
turn one pile into the other. A higher distance means there was a greater shape
mismatch. We plot the distribution of Earthmover’s distances and report its mean,
variance, and maximum.

Having found that the distribution of Earthmover’s distances for contrastive
dimensions had a longer tail than for noncontrastive dimensions, we qualitatively
analyzed the contents of this long tail to determine which individual contexts
led to the pattern observed. We identified the contexts that showed up most
frequently in the tail and analyzed how frequent they were (both in terms of
absolute count and their frequency ranking relative to all contexts), as well as what
the relative frequency of short and long vowels was in each of these key contexts.

To assess if the reliability of these differences between contrastive and non-
contrastive dimensions were reliable, we used bootstrap statistics. We sampled
(with replacement) particular vowel tokens with their contexts, creating a new
contrastive and a new noncontrastive dataset. We then recalculated Earthmover’s
distances across the contexts using these bootstrap samples, repeating the pro-
cess 50 times. We plot the maximum Earthmover’s distance with the SD, which
allows us to observe the reliability of these differences. To study the effect of the
input corpus size, we varied the number of vowel tokens sampled from 284 vowel
tokens (the size of the Dutch IDS corpus) to 132,037 (the size of the French vs.
Japanese corpora).

In our final simulation, we relaxed our assumptions about infants’ prior
knowledge. First, while previous analyses used neighboring segment identity
directly (e.g., /k/, /t/, and /s/), this simulation only used the segment’s broad
class (e.g., stop, fricative, and vowel), which infants are more sensitive to. Second,
to simulate imperfect segmentation, we added noise to the prosodic position
factor. Prosodic position is represented with four indicator values (depending on
whether the vowel in question is word/utterance-initial and word/utterance-final).
To add noise, we changed 20% of these values (making sure that the resulting
prosodic position was real; e.g., sounds considered to be utterance-final were
necessarily also considered to be word-final). We then used the same procedure
from above with these updated factors.

Corpora. The French vs. Japanese analysis compared the Corpus of Sponta-
neous Japanese (CSJ) against the Nijmegen Corpus of Casual French (NCCFr).

The Dutch analyses looked at the Ernestus Corpus of Spontaneous Dutch (ECSD)
(ADS) and the Levelt/Fikkert corpus (IDS).
CSJ. The CSJ is a large corpus of spontaneously produced ADS (69). Around 90%
of the speech consists of spontaneously produced monologues about academic
fields, their favorite memory, and so forth. The remaining 10% consists of sponta-
neous dialogues either in free conversation with the experimenter or engaged in
a task. Our analysis focuses on the core portion of the corpus, which was force-
aligned and hand-corrected with the segmental information required for our
analyses (see ref. 69 for more details). The core portion consists of 811,731 total
vowel tokens of which 89.1% are phonemically short and 10.9% are phonemically
long, but only the first 132,307 tokens were used to match the size of the French
corpus.
NCCFr. The NCCFr is a corpus of spontaneously produced ADS (70). Unlike the
CSJ, however, the NCCFr consists exclusively of conversational speech between
close friends. Topics included upcoming examinations, travel plans, an ongoing
strike, and so forth. The corpus consists of speech by 46 French speakers and
includes 132,307 vowel tokens. The corpus was orthographically transcribed by
two professional transcribers. The corpus was transcribed at the segmental level
by Martine Adda Decker (personal communication with M. Ernestus, 14 January
2019).
ECSD. The ECSD consists of adult-directed, conversational speech, with speakers
talking with a friend, at first freely and then engaged in a task-oriented discussion
(42). The corpus has speech by 20 different speakers and includes 60,955 tokens
with a length contrast and 21,187 tokens without. Professional transcribers
created an orthographic transcription of the interactions, which was manually
aligned to the speech. The corpus was also phonetically transcribed using a forced
alignment model (details can be found in ref. 71). Validations revealed a 14%
discrepancy between manual annotations and forced-aligned annotations, which
is in the range of human disagreement. However, these analyses did not directly
validate durational information, so it is unclear how accurate annotations of the
start and end points of the phones are. This could introduce some noise into
our analyses as it could affect how accurate the vowel durations are and how
accurately we can determine which word a vowel belonged to.
Fikkert/Levelt/Swingley IDS corpus. We also tested our account on a corpus
of Dutch IDS collected by Fikkert (72) and Levelt (73). The annotated portion of
this corpus is small: it contains a total of 300 utterances, with a total of only
1,296 vowel tokens, but each of the contrastive and noncontrastive datasets had
to be subsetted to 284 to make equally sized subsets. The corpus consists of
naturalistic longitudinal speech interactions with one child (Catootje) aged 1 year
10 months. The corpus was transcribed at the word level. Time-aligned phonetic
annotations were created by Dan Swingley (DS) (14). Given the transcriptions, the
speech toolkit HTK (Hidden Markov Model Toolkit) (74) was used to estimate the
boundaries of the phones using the HVITE forced-alignment tool. The output of
the forced-alignment tool was manually corrected by DS, a speaker of Dutch. K.H.
time-aligned the word-level transcription to the time-aligned phonetic transcrip-
tions based on the location of the phones in Praat (75).

Data, Materials, and Software Availability. Code for all analyses has been
deposited in GitHub (https://github.com/khitczenko/contextual-dl) (46). Previ-
ously published data were used for this work (14, 42, 69, 70, 72, 73).
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